3B SCIENTIFIC® PHYSICS

Entladungsröhre, groß 1002905

Bedienungsanleitung

06/18 ALF

Die Entladungsröhre dient zur Beobachtung der Leuchterscheinungen bei elektrischen Entladungen in Gasen bei vermindertem Druck sowie zur Untersuchung von Katoden- und Kanalstrahlen, die bei niedrigem Druck außerhalb der Entladungsstrecke auftreten.

1. Sicherheitshinweise

Betriebsvorschrift zur Vermeidung von Röntgen-

strahlen: Entladungsröhren können bei Betrieb mit einer Spannung ≥ 5kV Röntgenstrahlen emittieren und unterliegen dann in der Bundesrepublik Deutschland der Röntgenverordnung (§ 1, Abs.1 der RöV). Sie sind dort als Störstrahler definiert. Bei Verwendung eines strombegrenzten Hochspannungsnetzgeräts 6 kV ist der Betrieb des Geräts genehmigungsfrei. Dabei tritt keine unzulässig hohe Röntgenstrahlung aus. Die Ortsdosisleistung ist im Abstand von 0,1 m von der Oberfläche der Röhre wesentlich kleiner als 1 µSv/h (§5, Abs. 2 RöV). Der Betrieb mit einer Spannung über 5 kV aus anderen Spannungsquellen (z.B. Funkengenerator) ist in der Bundesrepublik Deutschland verboten. In anderen Ländern sind entsprechende Vorschrif-

Entladungsröhre keinen mechanischen Belastungen aussetzen, vorsichtig handhaben.

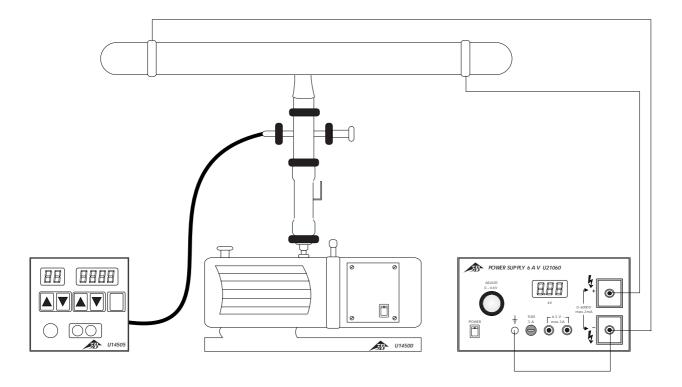
ten zu beachten.

 Röhre vor dem Versuch auf Beschädigungen überprüfen. Implosionsgefahr einer beschädigten Röhre beim Evakuieren

2. Beschreibung, technische Daten

Bei der Entladungsröhre handelt es sich um eine Tförmige Glasröhre mit Hülsenschliff, bei der ca. 15 cm von beiden Enden zwei scheibenförmige, durchbohrte Elektroden mit 4-mm-Buchsen zum Anschluss der Versorgungsspannung angebracht sind.

Abmessungen: ca. 700 mm x 40 mm \emptyset Vakuumanschluss: Hülsenschliff NS 19/26


3. Bedienung

- Mechanische Verbindungen der Vakuumapparatur sorgfältig herstellen.
- Hülsenschliff der Entladungsröhre gleichmäßig mit Vakuumfett einschmieren.
- Röhre ohne Gewaltanwendung auf den Kernschliff aufsetzen.
- 5 kV/2 mA Spannung zur Demonstration lichtstarker Entladungsvorgänge anlegen.
- Minus-Pol mit Masse-Buchse am Netzgerät verbinden (Schutzleiterverbindung).

- Nach Anlegen der Betriebsspannung Röhre evakuieren, Dosierventil geschlossen.
- Raum verdunkeln, Leuchterscheinungen beobachten.
- Durch feinfühliges Betätigen des Dosierventils kann die Beobachtungszeit verlängert werden.
- Nach Beendigung des Versuchs Kugelhahn schlie-Ben und Dosierventil zur Belüftung der Entladungsröhre öffnen.
- Pumpe abstellen, Kugelhahn wieder öffnen.

Zusätzlich benötigte Geräte:

- 1 Hochspannungsnetzgerät E (1013412/1017725)
- 1 Drehschieberpumpe P 4 Z (1002919)
- 1 Pirani-Vakuummeter (1012514)
- 1 2-Wege-Kugelhahn (1002923)
- 1 KF-Kreuzstück (1002924)
- 1 Dosierventil DN 16 KF (1018822)
- 1 Übergangsflansch DN 16 Kern NS 19/26 (1002929)
- 5 KF-Normal-Spannring DN 10/16 (1002930)
- 5 KF-Außenzentrierring DN 10/16 KF (1002931

