
3B SCIENTIFIC® PHYSICS

Kalorimeter 200 ml 1000823

Bedienungsanleitung

10/15 SP/ALF

- 1 Stockthermometer (nicht im Lieferumfang enthalten)
- 2 Öffnung für Thermometer
- 3 Gefäß

1. Sicherheitshinweise

Experimente werden mit heißen Flüssigkeiten durchgeführt. Verbrühungsgefahr!

- In Schulen und Ausbildungseinrichtungen ist der Betrieb des Gerätes durch geschultes Personal verantwortlich zu überwachen.
- Experiment auf einer ebenen Unterlage aufbauen.
- Vorsicht walten lassen bei der Entleerung des Gefäßes nach Beendigung des Experiments.

2. Beschreibung

Das Kalorimeter dient zur Bestimmung von spezifischen Wärmekapazitäten, Umwandlungsenergien von Stoffen, Mischtemperaturen oder der Schmelzwärme von Eis.

Das Kalorimeter besteht aus einem doppelwandigen Kunststoffbehälter mit Styroporeinsatz

3. Technische Daten

Isoliergefäßinhalt: 200 ml Masse: ca. 80 g

4. Experimentierbeispiele

Empfohlenes Zubehör

Stockthermometer (-10–100°C)	1003526
Aluminiumschrot, 100 g	1000832
Kupferschrot, 200 g	1000833
Glasschrot, 100 g	1000834

4.1 Wärmekapazität eines Kalorimeters

- 90 ml kaltes Wasser (vorher Temperatur bestimmen) in das Kalorimeter geben.
- 90 ml, ca. 60°C warmes Wasser in das Kalorimeter füllen, Deckel verschließen. Mit dem Thermometer vorsichtig umrühren und entstandene Mischtemperatur messen.
- Ca. 5 min. lang die Temperatur ablesen und warten bis der Mischwert stabil bleibt.

Ist die Wärmekapazität des Kalorimeters $C_{\rm K}$ nicht bekannt, kann diese in Form des Wasserwertes

$$W = C_{K} = m_{K} \cdot c_{K}$$

bestimmt werden. Der Wasserwert W ist keine Gerätekonstante, sondern vom Füllstand des Kalorimeters abhängig. Das Kalorimeter wird mit heißem Wasser bekannter Temperatur ϑ_1 und bekannter Masse m_1 gefüllt. Anschließend wird kaltes Wasser bekannter Masse m_2 und bekannter Temperatur ϑ_2 eingefüllt. Nach einiger Zeit stellt sich die Mischtemperatur ϑ_m ein. Das heiße Wasser und das Kalorimeter geben die Wärmemenge:

$$Q_1 = (c_W \cdot m_1 + W) \cdot (\vartheta_1 - \vartheta_m)$$

ab. Die vom kalten Wasser aufgenommene Wärmemenge ergibt sich aus:

$$Q_2 = c_{\mathsf{W}} \cdot m_2 \cdot (\vartheta_{\mathsf{m}} - \vartheta_2)$$

Nach der Energiebilanz muss die abgegebene Wärmemenge Q_1 gleich der aufgenommenen Wärmemenge Q_2 sein.

Die Wärmekapazität des Kalorimeters ist:

$$C_{K} = \frac{c_{W} \left[m_{2} \cdot \left(9_{m} - 9_{2} \right) - m_{1} \left(9_{1} - 9_{m} \right) \right]}{\left(9_{1} - 9_{m} \right)}$$

4.2 Spezifische Wärmekapazität fester Körper

- 190 ml kaltes Wasser in das Kalorimeter geben, Temperatur messen.
- Festen Körper in kochendem Wasser erhitzen, Körper in Kalorimeter hängen, Deckel verschließen und Mischtemperatur messen.

Im Inneren des Kalorimeters befindet sich eine Flüssigkeit bekannter Masse m_1 , Temperatur 9_1

und spezifischer Wärmekapazität c_1 (Wasser). Die zu untersuchende Substanz mit bekannter Masse m_2 und bekannter Temperatur ϑ_2 wird in das Kalorimeter hineingegeben. Der Festkörper sollte eine höhere Temperatur als die Flüssigkeit im Kalorimeter haben ($\vartheta_2 > \vartheta_1$). Der erhitze Körper gibt die Wärme

$$Q_2 = m_2 \cdot c_2 \cdot (\vartheta_2 - \vartheta_{\mathsf{m}})$$

ab. Das Wasser im Kalorimeter nimmt die Wärme

$$Q_1 = m_1 \cdot c_W \cdot (\vartheta_m - \vartheta_1)$$

auf. Bei der Energiebilanz muss auch die Wärmekapazität C_K des Kalorimeters berücksichtigt werden, da sich auch die Temperatur des Gefäßes während des Mischvorgangs ändert. Die vom Kalorimeter aufgenommene Wärmemenge ist

$$Q_{K} = C_{K} \cdot (\vartheta_{m} - \vartheta_{1})$$

Spez. Wärmekapazität von Wasser: 4,182 kJ kg·K

4.3 Schmelzwärme von Eis

- 190 ml Wasser in das Kalorimeter geben, Temperatur messen (kann Raumtemperatur betragen)
- Eis einer gewissen Masse in das Kalorimeter geben. Temperatur 0°C, Masse vorher bestimmen.
- Deckel auf das Gefäß geben und ca. 5 min. lang die Mischtemperatur messen.

Um die Schmelzwärme q des Eises zu bestimmen, werden in einem mit Wasser der Masse m_W und spezifischer Wärmekapazität c_W gefüllten Kalorimeter mit der Wärmekapazität C_K Eisstücke mit dem Schmelzpunkt ϑ_S (0°C) und der Gesamtmasse m_E geschmolzen. Die Temperatur wird während des gesamten Vorganges gemessen. Temperatur im Kalorimeter ist ϑ_1 , Temperatur nachdem das Eis geschmolzen ist ϑ_m .

Da das Kalorimeter ein geschlossenes System ist, gilt:

$$Q_2 + Q_1 = 0$$

Also kann die Schmelzwärme nach

$$q = \frac{\left(C_{\!K} + m_{\!W} \cdot c_{\!W}\right) \cdot \left(\vartheta_1 - \vartheta_{\!m}\right)}{m_{\!E}} - c_{\!W} \cdot \left(\vartheta_{\!m} - \vartheta_{\!S}\right)$$

berechnet werden.