UE1050201

VARIABLES-G-PENDEL

- Messung der Schwingungsdauer T in Abhängigkeit von der wirksamen Komponente g_{eff} der Fallbeschleunigung.
- Messung der Schwingungsdauer T für verschiedene Pendellängen L.

ZIEL

Messung der Schwingungsdauer eines Pendels in Abhängigkeit von der wirksamen Komponente der Fallbeschleunigung.

ZUSAMMENFASSUNG

Die Schwingungsdauer eines Pendels wird durch Neigung seiner Drehachse aus der Waagerechten vergrößert, da die wirksame Komponente der Fallbeschleunigung kleiner wird.

BENÖTIGTE GERÄTE

Anzahl	Geräte	ArtNr.	
1	Variables-g-Pendel	1000755	
1	Halter für Lichtschranke	1000756	
1	Lichtschranke	1000563	
1	Digitalzähler (230 V, 50/60 Hz)	1001033	oder
	Digitalzähler (115 V, 50/60 Hz)	1001032	
1	Stativfuß, 3-Bein, 150 mm	1002835	
1	Stativstange, 470 mm	1002934	

2

UE1050201

ALLGEMEINE GRUNDLAGEN

Die Schwingungsdauer eines mathematischen Pendels ist bestimmt durch die Pendellänge \boldsymbol{L} und die Fallbeschleunigung \boldsymbol{g} . Der Einfluss der Fallbeschleunigung kann demonstriert werden, wenn die Drehachse, um die das Pendel schwingt, aus der Waagerechten geneigt ist.

Bei geneigter Drehachse wird die parallel zur Drehachse verlaufende Komponente $g_{\rm par}$ der Fallbeschleunigung g durch die Halterung der Drehachse kompensiert (siehe Abb. 1). Die verbleibende wirksame Komponente $g_{\rm eff}$ hat den Betrag:

(1)
$$g_{\text{eff}} = g \cdot \cos \alpha$$

α: Neigungswinkel der Drehachse gegen die Horizontale.

Nach Auslenkung des Pendels um einen Winkel φ aus der Ruhelage wirkt auf die angehängte Masse m eine rücktreibende Kraft mit dem Betrag:

$$F = -m \cdot g_{\text{eff}} \cdot \sin \varphi$$

Für kleine Auslenkungen lautet daher die Bewegungsgleichung des Pendels:

$$m \cdot L \cdot \varphi + m \cdot g_{\text{eff}} \cdot \varphi = 0$$

Das Pendel schwingt somit mit der Kreisfrequenz:

(4)
$$\omega = \sqrt{\frac{g}{g}}$$

AUSWERTUNG

Aus (4) folgt für die Schwingungsdauer des Pendels

$$T = 2\pi \sqrt{\frac{L}{g_{\text{eff}}}}$$

Die Schwingungsdauer wird also bei Verkürzung des Pendels kleiner und bei Verkleinerung der wirksamen Komponente der Fallbeschleunigung größer.

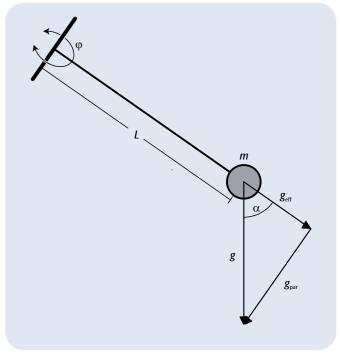


Abb. 1: Variables-g-Pendel (schematische Darstellung).

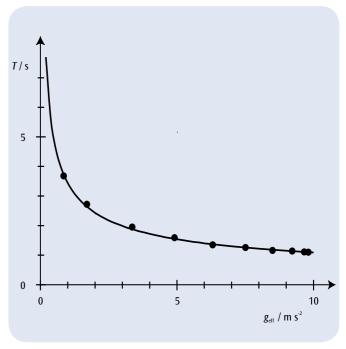


Abb. 2: Schwingungsdauer des Pendels in Abhängigkeit von der effektiven Komponente der Fallbeschleunigung. Durchgezogene Linie berechnet für $L=30~\rm cm$.