
3B SCIENTIFIC® PHYSICS

Leuchtdioden zur h-Bestimmung 1000917

Bedienungsanleitung

09/15 SP

- 1 Buchsen für LED's (Anode)
- 2 LEDs blau bis infrarot
- 3 Buchse für Vorwiderstand 100 Ohm
- 4 Vorwiderstand auf Platine 100 Ohm (Rückseite)
- 5 Buchse für gemeinsame Katode

1. Sicherheitshinweise

- Bei intensiv leuchtenden Dioden nicht direkt auf die Abstrahlfläche blicken.
- Maximalstrom nicht überschreiten.
- Dioden nicht ohne Vorwiderstand betreiben.
- Gerät nicht mit Flüssigkeiten in Berührung bringen.

2. Beschreibung

dient zur **Bestimmung** Planck'schen Konstante h durch Messung der Diffusionsspannung verschiedenfarbiger Leuchtdioden als Funktion der Wellenlänge bzw. Frequenz. Es können auch die Wellenlängen durch Gitterbeugung, Zusammenhänge Leucht- und Stromstärke und die Strom- / Spannungskennlinie der Leuchtdioden bestimmt werden. Auf der Platine befinden sich 6 Leuchtdioden in den Farben blau, grün, gelb und rot in 3 Wellenlängen. Die Katoden sind über einen gemeinsamen Punkt herausgeführt. Der Widerstand dient als Schutz und sollte stets beim Betrieb der Dioden mit vorgeschaltet sein.

3. Technische Daten

Betriebsspannung: 6 V DC

Zul. Maximalstrom: 20 mA, LED (Infrarot)

100 mA

Dioden: 6 LEDs (blau, grün, gelb

und rot in 3 Wellenlän-

gen)

Vorwiderstand: 100 Ohm; 1 W

Anschlüsse: 4-mm-

Sicherheitsbuchsen

Abmessung: 115 x 115 mm²

Masse: ca. 120 g

4. Versuchsbeispiele

Zur Durchführung der Versuche sind folgende Geräte zusätzlich erforderlich:

1 DC-Netzgerät 0–20 V @230 V 1003312 oder

 1 DC-Netzgerät 0–20 V @115 V
 1003311

 1 Vielfach-Messgerät Escola 100
 1013527

 1 Tonnenfuß
 1001046

Experimentierkabel

4.1 Abschätzung des Planckschen Wirkungsquantums

- Dioden einzeln über Widerstand an regelbare Spannungsquelle anschließen. Durchlassrichtung beachten.
- Netzgerät auf kleinste Spannung stellen und anschalten.
- Spannung langsam erhöhen.

Die Dioden beginnen zu leuchten wenn die Durchlassspannung $U_{\mathbb{D}}$ (zwischen den Anschlüssen 1 und 4) erreicht ist.

Bei der Wellenlänge 950 nm kann das Leuchten durch den Suchermonitor einer Digitalkamera beobachtet werden.

4.2 Auswertung

 Aus den Wellenlängen die Frequenzwerte berechnen.

 $f = c / \lambda$

• Werte für Energie berechnen $E = e^{*10^{-19} \cdot U_D}$.

- An Hand der Energiewerte im E/f Diagramm Trendlinie mitteln.
- Anstieg der Trendlinie (Gerade) berechnen (Plancksches Wirkungsquantum *h*).

$$e \cdot U_D = h \cdot f$$

λ (nm)	Farbe	<i>f</i> in 10 ¹⁴ Hz	<i>U</i> _D in V	E = e * U _D in J*10 ⁻¹⁹
		$f = c / \lambda$	Messwert	(e = 1,602*10 ⁻¹⁹ As)
465	Blau	6,45	2,26	3,62
560	Grün	5,36	1,72	2,76
585	Gelb	5,12	1,67	2,67
635	Hellrot	4,72	1,51	2,419
660	Dunkelrot	4,54	1,44	2,307
950	Infrarot	3,15	1,0	1,6